DariGambar diatas tanda panah tersebut berfungsi f = {(1, a), (2, b), (3, c)} diperlihatkan pada gambar (a). dari diagram panah pada gambar (a) tersebut, nampak bahwa f(1) = a, f(2) = b dan f(3) = c. Ini berarti bahwa untuk setiap anggota dalam himpunan A yang berbeda mempunyai peta yang berbeda pula di himpunan B. Suatu fungsi f : A → B dengan setiap anggota A yang berbeda memiliki peta Buatlahnama relasi yang mungkin antara kedua himpunan itu. Loncat ke konten. MENU Cari Soal; Tanya Soal; About; Homepage / Pertanyaan Matematika / Buatlah nama relasi yang mungkin antara kedua himpunan itu. Buatlah nama relasi yang mungkin antara kedua himpunan itu Oleh admin Diposting pada Mei 5, 2022. b Gambarlah diagram panah dari kedua himpunan tersebut. c. Tuliskan nama relasi yang terbentuk dari himpunan A ke himpunan B. Kunci Jawaban Dan Pedoman Penskoran Kuis No Jawaban Skor 1. Diagram panah: 3 2. a. ={0,1,2,3,4}dan ={0,2,4,6,8} b. Diagram panah: c.Relasi yang terbentuk dari himpunan A ke himpunan B adalah dua kali/setengah dari. 2 2 Materi3 dan Materi 4 (ERD dan Normalisasi) • Normalisasi merupakan sebuah teknik dalam logical desain sebuah basis data yang mengelompokkan atribut dari suatu relasi sehingga membentuk struktur relasi yang baik (tanpa redudansi). • Normalisasi adalah proses pembentukan struktur basis data sehingga sebagian besar ambiguity bisa dihilangkan Fungsif adalah suatu relasi yang menghubungkan setiap anggota x dalam suatu himpunan yang disebut daerah asal (Domain) dengan suatu nilai tunggal f (x) dari suatu himpunan kedua yang disebut daerah kawan (Kodomain). Himpunan nilai yang diperoleh dari relasi tersebut disebut daerah hasil ( Range). 5NTb9qk. Pengertian relasi antara anggota dua himpunan Relasi hubungan dapat terjadi antara anggota dari dua himpunan. Misalnya, A = {1, 2, 3, 4} dan B = {4, 5, 6, 7}. Antara anggota himpunan A dan B ada relasi “tiga kurangnya dari”. Relasi tersebut dapat ditunjukkan dengan diagram sbb Relas antara anggota himpunan A dan B dapat dinyatakan sebagai himpunan pasangan berurutan sebagai berikut {1,4, 2,5, 3,6, 4, 7} Relasi antara anggota himpunan A dan B dapat dinyatakan dengan menggunakan rumus. Misalnya anggota A dinyatakan dengan x, maka pasangannya ialah y anggota B dirumuskan y = x + 3 Pengertian fungsi dan pemetaan Perhatikan diagram panah berikut. Gb 1 Gb 2 gb 3 gb 4 Pada gambar 1, 3 dan 4 setiap anggota himpunan A mempunyai pasangan tepat satu anggota himpunan B. Relasi yang memiliki ciri seperti itu disebut fungsi atau pemetaan. Pada gambar 2 bukan fungsi karena ada anggota A yang punya pasangan lebih dari satu anggota B. Definisi Relasi dari himpunan A ke himpunan B disebut fungsi atau pemetaaan, jika dan hanya jika setiap unsur dalam himpunan A berpasangan tepat dengan satu unsur dalam himpunan B. Misalkan f adalah suatu fungsi dari himpunan A ke himpunan B, maka fungsi f dilambangkan dengan f A →B Jika dan sehingga pasangan berurut maka y disebut peta atau bayangan dari x oleh fungsi f. Peta atau bayangan ini dinyatakan dengan seperti ditunjukkan pada gambar berikut. Jadi, suatu fungi f dapat disajikan dengan lambang pemetaan sebagai berikut dengan disebut rumus atau aturan fungsi, x disebut peubah variabel bebas dan y disebut peubah variabel tak bebas. Himpunan A disebut daerah asal atau domain dan dilambangkan dengan Df. Himpunan B disebut daerah kawan atau kodomain dan dilambangkan dengan Kf. Himpunan dari semua peta A di B disebut daerah hasil range dan dilambangkan dengan Rf. Contoh A = {1, 2, 3, 4} dan B = {5, 7, 9, 10, 11, 12} f A→ B dimana fx = 2x +3 Diagram panahnya sbb Domainnya adalah A = {1, 2, 3, 4}. Kodomainnya adalah B = {5, 7, 9, 10, 11, 12} Rangenya adalah C = {5, 7, 9, 11} Fungsi Komposisi Perhatikan contoh berikut Ada 3 himpunan yaitu, A = {2, 3, 4, 5}, B = {5, 7, 9, 11} dan C = {27, 51, 66, 83}. f A →B ditentukan dengan rumus dengan ditentukan oleh rumus . Ditunjukkan oleh diagram panah sbb Jika h fungsi dari A ke C sehinnga peta dari 2 adalah 27 peta dari 3 adalah 57 peta dari 4 adalah 66 peta dari 5 adalah 83 dan diagaram panahnya menjadi, fungsi dari h dari A ke C disebut fungsi komposisi dari g dan f ditulis atau Secara umum Definisi Misalkan fungsi ditentukan dengan rumus ditentukan dengan rumus Fungsi komposisi g dan f ditentukan dengan autan o dibaca komposisi atau “bundaran” Perhatikan bahwa dalam fungsi komposisi ditentukan dengan pengerjaan terlebih dahulu kemudian dilanjutkan dengan pengerjaan oleh Perhatikan contoh berikut. Contoh Diketahui $latex fx=x^{2}+1$ dan $latex gx=2x-3$ Tentukan a. f o gx b. g o fx Jawab a. f o gx = f gx = f2x – 3 = 2x – 32 + 1 = 4x2 – 12x + 9 + 1 = 4x2 – 12x + 10 b. g o fx = g fx = gx2 + 1 = 2x2 + 1 – 3 = 2x2 – 1 Jadi pada komposisi fungsi tidak berlaku sifat komutatif.

buatlah nama relasi yang mungkin antara kedua himpunan itu